- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fendley, Isabel_M (2)
-
Mittal, Tushar (2)
-
Arenillas, Ignacio (1)
-
Arz, José_A (1)
-
Cheong, Hee_Jun (1)
-
Gilabert, Vicente (1)
-
Pande, Kanchan (1)
-
Renne, Paul_R (1)
-
Self, Stephen (1)
-
Smit, Jan (1)
-
Sprain, Courtney_J (1)
-
Sprain, Courtney_Jean (1)
-
Vanderkluysen, Loÿc (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Large Igneous Province (LIP) eruptions are thought to have driven environmental and climate change over wide temporal scales ranging from a few to thousands of years. Since the radiative effects and atmospheric lifetime of carbon dioxide (CO2, warming) and sulfur dioxide (SO2, cooling) are very different, the conventional assumption has been to analyze the effects of CO2and SO2emissions separately and add them together afterward. In this study, we test this assumption by analyzing the joint effect of CO2and SO2on the marine carbonate cycle using a biogeochemical carbon cycle box model (Long‐term Ocean‐atmosphere‐Sediment CArbon cycle Reservoir Model). By performing model runs with very fine temporal resolution (∼0.1‐year timestep), we analyze the effects of LIP carbon and sulfur gas emissions on timescales ranging from an individual eruption (hundreds to thousands of years) to the entire long‐term carbon cycle (>100,000 years). We find that, contrary to previous work, sulfur emissions have significant long‐term (>1,000 years) effects on the marine carbon cycle (dissolved inorganic carbon, pH, alkalinity, and carbonate compensation depth). This is due to two processes: the strongly temperature‐dependent equilibrium coefficients for marine carbonate chemistry and the few thousand‐year timescale for ocean overturning circulation. Thus, the effects of volcanic sulfur are not simply additive to the impact of carbon emissions. We develop a causal mechanistic framework to visualize the feedbacks associated with combined carbon and sulfur emissions and the associated timescales. Our results provide a new perspective for understanding the complex feedback mechanisms controlling the environmental effects of large volcanic eruptions over Earth history.more » « less
-
Fendley, Isabel_M; Sprain, Courtney_J; Renne, Paul_R; Arenillas, Ignacio; Arz, José_A; Gilabert, Vicente; Self, Stephen; Vanderkluysen, Loÿc; Pande, Kanchan; Smit, Jan; et al (, Geochemistry, Geophysics, Geosystems)Abstract Deccan Traps flood basalt volcanism affected ecosystems spanning the end‐Cretaceous mass extinction, with the most significant environmental effects hypothesized to be a consequence of the largest eruptions. The Rajahmundry Traps are the farthest exposures (~1,000 km) of Deccan basalt from the putative eruptive centers in the Western Ghats and hence represent some of the largest volume Deccan eruptions. Although the three subaerial Rajahmundry lava flows have been geochemically correlated to the Wai Subgroup of the Deccan Traps, poor precision associated with previous radioisotopic age constraints has prevented detailed comparison with potential climate effects. In this study, we use new40Ar/39Ar dates, paleomagnetic and volcanological analyses, and biostratigraphic constraints for the Rajahmundry lava flows to ascertain the timing and style of their emplacement. We find that the lower and middle flows (65.92 ± 0.25 and 65.67 ± 0.08 Ma, ±1σsystematic uncertainty) were erupted within magnetochron C29r and were a part of the Ambenali Formation of the Deccan Traps. By contrast, the uppermost flow (65.27 ± 0.08 Ma) was erupted in C29n as part of the Mahabaleshwar Formation. Given these age constraints, the Rajahmundry flows were not involved in the end‐Cretaceous extinction as previously hypothesized. To determine whether the emplacement of the Rajahmundry flows could have affected global climate, we estimated their eruptive CO2release and corresponding climate change using scalings from the LOSCAR carbon cycle model. We find that the eruptive gas emissions of these flows were insufficient to directly cause multi‐degree warming; hence, a causal relationship with significant climate warming requires additional Earth system feedbacks.more » « less
An official website of the United States government
